Year 3 - Arithmetic Expectations

This series of documents aims to summarise the number facts, mental calculation strategies and the stage(s) of the progression towards the written methods for each of the four operations.

For each strategy, the concrete and pictorial representations have been suggested. However, to keep the document to a more manageable size, the imagery has not been shown explicitly as this should be found in your school's agreed mental calculations policies.

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

Each strategy will require specific modelling (teaching) and sufficient practice for children to develop confidence, accuracy and fluency in performing them.
Children should also be taught when it is appropriate to use each strategy, by looking at the numbers involved and making effective decisions. Again, this is a sign of a child's fluency in mathematics; being able to recognise which strategy best suits a given calculation, rather than always using the same method regardless of the numbers involved.

Acknowledgements

Special thanks to the following teachers who helped to create these documents:

Sue Byrom - Colne Park Primary	Naomi Tyson - Gisburn Road Community Primary	Hannah Blackburn - Lowerhouse Juniors
Tara Warbrick - Colne Park Primary	Nick Browne - Gisburn Road Community Primary	Jess Dornan - Lowerhouse Juniors
Jane Dempsey - Burnley Springfield Primary	Laura Mitchell - Burnley St Stephen's CE Primary	Michelle Hume - Whittlefield Primary
Andrew Douglas - Burnley Springfield Primary	Moira Waller - Burnley St Stephen's CE Primary	Stephen Riley - Whittlefield Primary

Arithmetic Expectations - Year 3

Skills	Examples
Counting	
Find I, 10 or 100 more or less than a given number.	$\begin{array}{lll} 229+1=- & 229+10= & 229+100= \\ 200=\overline{+1} & 479+\overline{=}=480 & 726+\overline{ }=826 \\ 400-1=- & 261-10= & -\quad=812-100 \end{array}$
Count from 0 in multiples of 4, 8,50 and 100	Count from 0 in fours Count from 0 in eights What number is missing from this counting sequence? $0,8,16,32,40,48$ What number would come next in this counting sequence? $0,50,100,150,200$, What number comes immediately after 600 when counting up in steps of 100 ?
Count up and down in tenths.	Count on from 0 in tenths. What would come next in this counting sequence? $0, \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}$ What is missing from this number sequence? $\frac{7}{10}, \frac{6}{10}, \frac{5}{10}, \frac{3}{10}, \frac{2}{10}$
Number Facts	
Recall addition and subtraction facts for 100 (multiples of 5 and 10).	$\begin{array}{lll} 100-30= & 20+\ldots=100 & 100={ }^{+}+5 \\ 100-45=- & 100-\ldots=15 & 65=\overline{100-} \end{array}$
Recall and use multiplication division facts for the 3, 4 and 8 multiplication tables.	$6 \times 3=$ $2 \times 4=$ $4 \times 8=$ $20=4 \times-$ $21=3 \times-$ $32=\overline{\times 8}$$\quad \bar{x} \times 4=28$
Mental Calculation Strategies - Addition and Subtraction	
Identify and use knowledge of number bonds within a calculation. Concrete - tens frames, Diennes equipment, place value counters Pictorial - Diennes jottings, number line	$42+3842+30+8$ (recognising that 2 and 8 is a number bond to 10 , so the answer will be a multiple of 10) 60-28 60-20-8 (using knowledge that $10-8=2$, so $40-8=32$) 120-50 120-20-30 (using knowledge of number bonds to 100, leaving an answer of 70)
Derive and use addition and subtraction facts for 100 Concrete - Diennes equipment, place value counters, beadstring Pictorial - Number line	$\begin{array}{llr} 100-43= & 22+\ldots=100 & 100=++9 \\ 100-76=- & 100-\ldots=48 & 66=\overline{100-} . \end{array}$
Derive and use addition and subtraction facts for multiples of 100 that total 1000 Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings	$\begin{array}{llrl} 1000-300= & 200+\ldots & =1000 & 1000 \end{array}=\overline{+}+500$
Reorder numbers in a calculation. Concrete - tens frames, Diennes equipment, place value counters Pictorial - Diennes jottings, number line	$23+54$ $54+23$ $12+19+12$ $12+12+19$ (using knowledge of doubles) $6+8+4$ $6+4+8$ (using knowledge of number bonds to 10) $70+50+30$ $70+30+50$ (using knowledge of number bonds to 100)
Partition and combine multiples of hundreds, tens and ones.	$526+200$ counting on in hundreds

[^0]| Concrete - Diennes equipment, place value counters, beadstring Pictorial - number line | $\begin{aligned} & 137+40 \\ & 272+8 \\ & 428-200 \\ & 323-70 \\ & 693-8 \\ & 37+15 \\ & 42-25 \end{aligned}$ | counting on in tens counting on in ones (or using knowledge of bonds to 10) counting back in hundreds
 counting back in tens
 counting back in ones
 37 add 10 and $5=37$ add 10 add 5 (crossing tens boundaries)
 42 take away 20 and $5=42$ take away 20 take away 5 (crossing tens boundaries) |
| :---: | :---: | :---: |
| Find differences by counting up through the next multiple of 10 or 100 Pictorial - number line | $\begin{aligned} & \hline 60-43 \\ & 53-38 \\ & 104-95 \\ & 200-86 \end{aligned}$ | for time calculations, e.g. a journey time from 2:43 until 3:00 nt because the numbers are close to each other nt because the numbers are close to each other for money calculations, e.g. change from $£ 2$ when spending 86p |
| Bridge through 10 when adding or subtracting a single digit number (partitioning, e.g. 58+5=58+2+3 or 76-8=76-6-2)
 Pictorial - number line | $\begin{aligned} & \hline 35+7 \\ & 97+6 \\ & 178+5 \\ & 42-7 \\ & 204-6 \\ & 37 I-5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { as } 35+5+2 \\ & \text { as } 97+3+3 \\ & \text { as } 178+2+3 \\ & \text { as } 42-2-5 \\ & \text { as } 204-4-2 \\ & \text { as } 371-1-4 \end{aligned}$ |
| Add or subtract 9, 19, 29 etc by rounding and compensating Pictorial - number line | $\begin{aligned} & 34+29 \\ & 127+49 \\ & 96-39 \\ & 273-59 \end{aligned}$ | $\begin{aligned} & \text { as } 34+30-1 \\ & \text { as } 127+50-1 \\ & \text { as } 96-40+1 \\ & \text { as } 273-60+1 \end{aligned}$ |
| Mental Calculation Strategies - Multiplication and Division | | |
| Derive and use doubles of all numbers to $\mathbf{1 0 0}$ and corresponding halves.
 Concrete - Diennes equipment, place value counters
 Pictorial - part - part - whole diagram | Double 46 $\begin{aligned} & 29+29 \\ & 38 \times 2 \end{aligned}$ | Halve 86 Find half of 54 $92 \div 2$ |
| Derive and use doubles of all multiples of $\mathbf{5 0}$ to $\mathbf{5 0 0}$
 Concrete - Diennes equipment, place value counters
 Pictorial - part - part - whole diagram | $\begin{aligned} & \text { Double } 350 \\ & 400+400 \\ & 450 \times 2 \end{aligned}$ | |
| Multiply a one- or two-digit number by 10 and a one-digit number by 100
 Concrete - Diennes equipment, place value counters
 Pictorial - place value chart | $\begin{aligned} & 3 \times 10 \\ & 7 \times 100 \\ & 62 \times 10 \end{aligned}$ | |
| Within known tables, use related facts to multiply T0 by a one-digit number NB TO represents a two-digit multiple of ten.
 Concrete - Diennes equipment, place value counters
 Pictorial - Diennes jottings | 60×3 related to 6×3 because $60 \times 3=10 \times 6 \times 3$ which can be reordered to $6 \times 3 \times 10$ 50×4
 related to 5×4 because $50 \times 4=10 \times 5 \times 4$ which can be reordered to $5 \times 4 \times 10$ 30×8
 related to 3×8 because $30 \times 8=10 \times 3 \times 8$ which can be reordered to $3 \times 8 \times 10$ | |

Within known tables, use partitioning to multiply TI by a one-digit number Pictorial - Show array using squared paper.	$\begin{aligned} & 31 \times 4=30 \times 4 \text { add } I \times 4 \text { (said as 'thirty fours add one four') } \\ & 31 \times 4=120+4 \\ & 31 \times 4=124 \\ & 61 \times 4 \\ & 31 \times 8 \end{aligned}$
Use compensation to multiply 19 by a one-digit number Pictorial - Show array using squared paper.	$19 \times 4=20 \times 4$ subtract 1×4 (said as 'twenty fours subtract one four') $19 \times 4=80-4$ $19 \times 4=76$ $\begin{aligned} & 19 \times 3 \\ & 19 \times 5 \\ & 19 \times 8 \end{aligned}$
Use partitioning to double any two-digit number Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings, part-part-whole diagram to double e.g. double 76	Double 39, double 52, double 85
Use related facts or partitioning to double any multiple of 50 to 500 Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings, part-part-whole diagram to double e.g. double 350	Double 250, double 450, double I50
Use related facts to divide TO by a one-digit number NB T0 represents a multiple of ten Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings, division trio e.g. $8 \div 2=4$ then $80 \div 20=4$	$\begin{aligned} & 60 \div 3 \text { related to } 6 \div 3 \\ & 80 \div 40 \text { related to } 8 \div 4 \\ & 90 \div 3 \text { related to } 9 \div 3 \end{aligned}$
Use partitioning to halve even numbers up to $\mathbf{2 0 0}$ Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings, part-part-whole diagram to halve e.g. halve I54	Find half of 162 by partitioning into 160 and 2 Find half of 94 by partitioning into 80 and 14 Find half of 136 by partitioning into 120 and 16

Progression Towards Written Calculation Strategies - Multiplication

Progression Towards Written Caicu			
Multiplication of a two digit number by a one digit number - grid method			
Pictorial - rectangular arrays on squared paper			

Division using a vertical number line to show efficient repeated subtraction
Concrete - cubes, Diennes equipment
Pictorial - number line

Decision Making
When calculating, children should ask themselves:

- do I know the answer because it is a fact I have learnt?
can I work it out easily in my head?
- can I use some equipment or a jotting?
- do I need to use the written method?

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

[^0]: © Lancashire Mathematics Team - Lancashire County Council 2019

