Year 2-Arithmetic Expectations

This series of documents aims to summarise the number facts, mental calculation strategies and the stage(s) of the progression towards the written methods for each of the four operations.

For each strategy, the concrete and pictorial representations have been suggested. However, to keep the document to a more manageable size, the imagery has not been shown explicitly as this should be found in your school's agreed mental calculations policies.

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

Each strategy will require specific modelling (teaching) and sufficient practice for children to develop confidence, accuracy and fluency in performing them.
Children should also be taught when it is appropriate to use each strategy, by looking at the numbers involved and making effective decisions. Again, this is a sign of a child's fluency in mathematics; being able to recognise which strategy best suits a given calculation, rather than always using the same method regardless of the numbers involved.

Acknowledgements

Special thanks to the following teachers who helped to create these documents:

Sue Byrom - Colne Park Primary	Naomi Tyson - Gisburn Road Community Primary
Tara Warbrick - Colne Park Primary	Nick Browne - Gisburn Road Community Primary
Jane Dempsey - Burnley Springfield Primary	Laura Mitchell - Burnley St Stephen's CE Primary
Andrew Douglas - Burnley Springfield Primary	Moira Waller - Burnley St Stephen's CE Primary

Hannah Blackburn - Lowerhouse Juniors
Jess Dornan - Lowerhouse Juniors
Michelle Hume - Whittlefield Primary
Stephen Riley - Whittlefield Primary

Skills	Examples
Counting	
Count in multiples of 2,3 and 5 from 0. (Counting in 2 s and 5 s from 0 is continuation of Year I expectations).	Count from 0 in: twos; fives; threes. Complete these counting sequences: $0,5,10,15,20, \ldots, \quad 0,2,4,6,8, \ldots, \ldots,-, 3,6, \ldots,$ What number is missing from this counting sequence? $0,3,6,9,12,15,18,24,27$
Count forwards or backwards in steps of I or 10 from any one- or twodigit number	Count forwards in ones from 75 to 92 Count back in ones from 54 to 38 Continue these sequences: $24,34,44, \ldots, \ldots \quad$, \quad, $99,69, \ldots, \ldots \quad$ 44, $34,24, \ldots,-$
Count on and back in steps of $\frac{1}{2}$ and $\frac{1}{4}$	Count from 0 in steps of $\frac{1}{2}$ When counting from 0 in steps of $\frac{1}{4}$ what comes immediately after $\frac{3}{4}$? Answer could be $\frac{4}{4}$ or I Count back in steps of $\frac{1}{2}$ from $\frac{6}{2}$ Count back in steps of $\frac{1}{2}$ from $2 \frac{1}{2}$
Number Facts	
Recall number bonds and related subtraction facts for all numbers to $\mathbf{2 0}$	
Derive and use related facts to 100	$\begin{array}{lll} 60+40= & 70+\ldots=100 & 100=20+\ldots \\ 100-40= & 100-_=70 & 20=100-\ldots \end{array}$
Partition numbers into tens and ones.	46 is 40 and $6 \quad 46$ is 40 and __ 46 is 6 and __ $40+\ldots=46 \quad 6+40=\ldots$
Recall and use number bonds to 5 totalling 60 (to support time).	$\begin{array}{lll} 40+20= & 25+\ldots=60 & 60=+15 \\ 60-10=- & 60-_=30 & 35=60- \end{array}$
Recall and use multiplication and division facts for 2,5 and 10 multiplication tables, including recognising odd and even numbers.	$6 \times 2=\ldots 2 \times \ldots=16 \quad \times 5=15 \quad \ldots=5 \times 7 \quad 110 \div 10=\ldots \quad \ldots=80 \div 10$ Which of these numbers are odd? $32,44,18,40,55,23,100$
Mental Calculation Strategies - Addition and Subtraction	
Count on or back in ones and tens from any given number, e.g. (36 + 40 =) Concrete - Diennes equipment, place value counters, beadstring Pictorial - Diennes jottings, number line	$36+40=\ldots 30+48=\ldots 96-\ldots=46$
Partition and combine multiples of tens and ones. Concrete - Diennes equipment, place value counters, beadstring Pictorial - Diennes jottings, number line	$40+\mathbf{3 7}$ $\mathbf{4 0}$ add $\mathbf{3 0}$ and $\mathbf{7}=40$ add $\mathbf{3 0}$ add $\mathbf{7}$ $15+14$ $\mathbf{1 0}$ and $\mathbf{5}$ add $\mathbf{1 0}$ and $\mathbf{4}=10$ add 10 add 5 add 4 or 15 add 10 add 4 $37+12$ 37 add $\mathbf{1 0}$ and $\mathbf{2}=\mathbf{3 7}$ add 10 add 2 $78-42$ 78 take away $\mathbf{4 0}$ and $\mathbf{2}=78$ take away 40 take away 2 $80-35$ 80 take away $\mathbf{3 0}$ and $\mathbf{5}=80$ take away 30 take away 5

Reorder numbers in a calculation.

Concrete - Diennes equipment, place value counters, beadstring
Pictorial - Diennes jottings, number line
Find a small difference by counting up from the lesser to the greater

number

Concrete - Diennes equipment shown horizontally, beadstring
Pictorial - Number line

Begin to bridge through 10 when adding a single digit number

 (partitioning, e.g. $58+5=58+2+3$)Concrete - Diennes equipment, place value counters, beadstring
Pictorial - number line

Add or subtract 9 or II and I 9 or 2 I by rounding and compensating.
Concrete - Diennes equipment, place value counters
Pictorial - number line, 100 square

Mental Calculation Strategies - Multiplication and Division

Apply counting in twos, threes, fives and tens to solve multiplication

 problems with a repeated addition context.Concrete - real items to model the context of the problem, Multilink arrays, beadstring Pictorial - images of the items in the context of the problem, jottings, arrays, number line

Share an amount into equal parts.

Concrete - real items to model the context of the problem
Pictorial - images of the items in the context of the problem

Separate an amount into equal groups using repeated subtraction.

Concrete - real items to model the context of the problem, Multilink arrays, beadstring
Pictorial - images of the items in the context of the problem, arrays, jottings, number line

Derive and use doubles of simple two-digit numbers.

(of which the ones total less than IO)
Concrete - Diennes equipment, place value counters
Pictorial - Diennes jottings
Derive and use halves of simple two-digit number even numbers.
(of which the tens are even)
Concrete - Diennes equipment, place value counters
Pictorial - Diennes jottings
5×4 count in fives until fact is known
3×10 count in tens until fact is known
7×3 using a representation then count in threes
2×9 count in twos until fact is known
$24 \div 2$ share out until fact is known
$40 \div 10$ share out until fact is known
$18 \div 3$ using a representation to share 18 into 3 equal parts
$24 \div 2$ repeated subtraction until fact is known
$40 \div 10$ repeated subtraction until fact is known
$18 \div 3$ repeated subtraction to find how many 3 s are in 18
I have 24 sweets. How many children would get 2 sweets?
There are 30 bears who live on one street. Three bears live in every house. How many houses are on the street?

Double 43 is double $40(80)$ plus double $3(6)=86$
24 add 24 is double $20(40)$ plus double $4(8)=48$
2×33 (two lots of 33) is double $30(60)$ plus double $3(6)=66$

$$
\begin{aligned}
& \text { Half of } 64 \text { is half of } 60(30) \text { plus half of } 4(2)=32 \\
& \text { Halve of } 28 \text { is half of } 20(10) \text { plus half of } 8(4)=14 \\
& 46 \div 2 \text { is half of } 40(20) \text { plus half of } 6(3)=23
\end{aligned}
$$

Progression Towards Written Calculation Strategies - Addition
Add two, two-digit numbers
Pictorial - Diennes equipment, place value counters
Substrans
Concrete - Diennes equipment, place value counters
Pictorial - tens and ones jottings

Recognise multiplication as real arrays and understand that multiplication is repeated addition and the total can be found by counting in equal steps/groups. Concrete - real arrays e.g. baking trays, ice cube trays, egg boxes, cubes, counters Pictorial - images of real arrays, rectangles drawn on squared paper	How many eggs are needed to fill the box? How many eggs would fill two boxes? Children arrange items into equal groups and count to find the total. Children understand how arrays can show repeated addition of rows and/or columns and that multiplication is commutative i.e. that 3×5 gives the same answer as 5×3
Progression Towards Written Calculation Strategies - Division	
Represent division calculations as grouping (repeated subtraction) and use jottings to support their calculation. Introduce simple remainders as the items are shared into equal parts, but some may be left over. Concrete - real sets of items, cubes, counters Pictorial - images real items, rectangles drawn on squared paper	$12 \div 3=?$ Children begin to read this calculation as, 'How many groups of 3 are there in 12?' At this stage, children will also be introduced to division calculations that result in remainders. $13 \div 4=3$ remainder 1
Decision Making	
When calculating, children should ask themselves: - do I know the answer because it is a fact I have learnt? - can I work it out easily in my head? - can I use some equipment or a jotting?	

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

